Neurite responses to ephrin-A5 modulated by BDNF: evidence for TrkB-EphA interactions.

نویسندگان

  • Melinda Fitzgerald
  • Alysia Buckley
  • Sherralee S Lukehurst
  • Sarah A Dunlop
  • Lyn D Beazley
  • Jennifer Rodger
چکیده

In the developing visual system, growing retinal ganglion cell (RGC) axons are exposed to multiple guidance and growth factors. Furthermore, the relative levels of these factors are differentially regulated as topography is roughly established and then refined. We have shown that during the establishment of rough topography (P3), growth cones of pure and explanted RGCs treated with combinations of BDNF and ephrin-A5-Fc responded differently than RGCs treated with BDNF or ephrin-A5-Fc alone (p=0.0083). The response to the combined treatment mimicked that of RGCs cultured with ephrin-A5-Fc alone once topography refines. The guidance cue receptors EphA and TrkB were shown to co-localise in RGCs in vitro. Furthermore, EphA and TrkB receptors interacted directly in in vitro binding assays. Our results suggest that the conversion of growth cone responses from collapse to stabilisation as topography refines, occurs as a result of interactions between EphA and TrkB receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurite resposes to ephrin-A5 modulated by BDNF: Evidence for TrkB-EphA interactions

Take down policy If you believe this document infringes copyright, raise a complaint by contacting [email protected]. The document will be immediately withdrawn from public access while the complaint is being investigated. We believe that this manuscript constitutes a significant and novel contribution that would be facilitated by the rapid publication achieved by BBRC. In the developin...

متن کامل

EphA activation overrides the presynaptic actions of BDNF.

The adult pattern of neural connectivity is shaped by repulsive and attractive factors, many of which are modulated by activity. Although much is known about the actions of these factors when studied in isolation, little is known about how they interact. To address this question, we examined the effects of sequential or coapplication of brain-derived neurotrophic factor (BDNF) and Fc-conjugated...

متن کامل

Multiple effects of ephrin-A5 on cortical neurons are mediated by SRC family kinases.

The Eph receptor tyrosine kinases and their membrane-bound ligands, the ephrins, are involved in a variety of developmental processes such as axonal guidance, cell migration, cell adhesion, proliferation, and differentiation. In addition to repulsive effects, ephrins can also induce attractive responses. Up to now, little was known about the underlying signaling mechanisms that regulate attract...

متن کامل

Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dy...

متن کامل

Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum.

The striatum integrates limbic and neocortical inputs to regulate sensorimotor and psychomotor behaviors. This function is dependent on the segregation of striatal projection neurons into anatomical and functional components, such as the striosome and matrix compartments. In the present study the association of ephrin-A cell surface ligands and EphA receptor tyrosine kinases (RTKs) with the org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 374 4  شماره 

صفحات  -

تاریخ انتشار 2008